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Vf = (2Eg) 1/2 [(M/C) + 1/2] – 1/2    Cylinder

= Vg (ρcyl / ρex) – 1/2 [(tcyl / Rex) 2 + 2 (tcyl / Rex) + 0.5 (ρex / ρcyl)] – 1/2

Vf = (2Eg) 1/2 [(M/C) + 1/3] – 1/2 Symmetric Sandwich

Vf = (2Eg) 1/2 [(M/C) + 3/5] – 1/2    Spherical Shell

The Gurney Velocity – Key to the Equations

Values for the Gurney Velocity (2Eg) 1/2 derived from
experiments using different cylinder materials

Steel (m/s) Copper (m/s)
Comp. A-3 (RDX) 2416 2630
Cyclotol (75/25 cast) 2320 2790
Comp. B 2310 2700
TNT (cast) 2040 2370
Tetryl 2209 2500



Gurney Velocity / Detonation Rate relationships:

Vg / D  ≅  0.337                 (P.W. Cooper)

Vg / D  ≅ (0.605 / [Γ – 1])    (J. Roth per J.E. Kennedy)
where Γ = the adiabatic exponent for the gaseous products

Vg / D  ≅ (0.60 φ – 1/2 + 0.648 ρo
1/2) / (1.01 + 1.313 ρo)

where φ = N M 1/2 Q 1/2 ; N = moles of gaseous detonation products
M = average weight of gases, and Q = chemical energy of detonation

(Hardesty & Kennedy / Kamlet & Hurwitz)

Vg / D Exp. (Licht) Cooper Roth HK/ KH
TNT 0.346 0.346 0.350 0.351
Comp B 0.345 0.343 0.355 0.385
Octol 0.335 0.330 0.331 0.328
LX-14 ----- 0.326 0.348 -----
PETN 0.359 0.355 0.369 0.331

Copper Cylinders



Comparison of Gurney Velocities on the Basis of
Cylinder Wall Areal Density from

2-inch Diameter Cylinder Tests Using Comp. B Explosive
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Vg / D = 0.302 ( tcyl ρcyl / Rex ρex ) (-- 5 / 30 ) 

Ratio of the Gurney Velocity to an Explosive’s Detonation
Rate versus a Radial-Projection Areal Density Ratio



Normalized Gurney Velocity Data from Measurements of
Cylinder Wall Velocity at Fracture Time
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BRIGS Two-Step Detonation-Driven Propulsion Model

Initial motion:
• imparted by a brisant shock-dominated process that depends

upon intimate contact of explosive with propelled material
• envisioned as caused by higher-pressure region of detonation

front (envision the von Neumann spike or reaction zone region
as a finite thickness of solid material squeezed at high pressure)

Gas-push (gas-dynamic) propulsion:
• envisioned similar to that assumed by Gurney modeling

(gaseous product expansion from a homogeneous “all burnt”
condition while pushing confining boundaries to a final
“steady-state” velocity as the pressure drops)



Vinitial / Vfinal Data Plotted for Cylinders and Plates
of Various Inert Materials and Explosives
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Equation for cylinders describing ratio of
velocity imparted by initial coupling to final velocity

Vi / Vf = 0.3446 [Γ – 1] (tcyl ρcyl / Rex ρex) (5/30) (tcyl / Rex) ( – 3/40)

[(tcyl / Rex) 2 + 2 (tcyl / Rex) + 0.5 (ρex / ρcyl)] 1/2

Initial velocity imparted to cylinder wall
Vi / D = 0.2085 (ρcyl / ρex) – 1/2 (tcyl / Rex) (– 3/40)

New formulas improving insight into
detonation-driven propulsion

Vi = initial free-surface velocity 
Vf = final “steady-state” velocity 

Transition Pressure (Gpa)
Aluminum  20.5
Carbon (pressed graphite) 23
Iron (0.2 wt% Carbon) 14.7
Iron (0.5 wt% Carbon) 13
Titanium 9.4
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Ver / Vf =  V1 / Vf +  V2 / Vf

Equation for instantaneous velocity (Ver) as
a function of the gaseous detonation products
expansion ratio (ExR)

Vi = initial free-surface velocity
Vf = final “steady-state” velocity at final expansion ratio (ExRf)

(Equation was fitted “by eye” using MathCad™ software.)

V1 / Vf =  (Vi / Vf) [ (e – ExR – e – ExR ^3) +
( { ExR / ExRf } – 1/2 / [ 1 / ExRf ] – 1/2 ) ]

V2 / Vf =  [ 1 – { (Vi / Vf) / (1 / ExRf) – 1/2 } ]
(ExR / ExRf) – 1/3 [ log (ExR) / log (ExRf) ]



Normalized Gurney Velocity Data for Some Explosives
in Cylinders and Spheres of Different Materials
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The important message is …..  
material properties and geometry
affect Gurney Velocity measurement

The trend of these effects was demonstrated in:
• Cylinder tests (copper, aluminum, and steel)
• Fragmentation tests (copper, aluminum, etc.)

New data and analysis are needed:
• Published data were not specifically taken

to reveal the effects
• Most copper cylinder test data taken at

(tcyl ρcyl / Rex ρex)  ≅ 1.0
• Gurney (Lagrange) assumptions may not be valid

New opportunities:
• Gurney values would reflect materials & geometry
• To define effect of cylinder wall phase transitions



Another important message is …..  
that gas-dynamic propulsion by

many explosives is similar

Differences between explosives arise from:
• Vi (solid-state detonation coupling effects)
• Total convertible energy (i.e. Vg from Vf at ExRf)
• Time needed to convert total energy to kinetic 

energy of boundary materials & detonation products

New, more accurate data are needed:
• Vi [grazing wave] using interferometry and

various materials subject to phase transitions
• Vf data at larger ExRf [beyond 6.5 to 10 - 14]
• Not sure that Gurney (Lagrange) assumptions valid

[need more data from Vi to ExR = 2 & beyond]



Additional Backup Information
Follows …….
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Non-Dimensional Velocity as a Function of Explosive 
Volume Expansion for Sixteen "Ideal" Explosives
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Non-Dimensional Velocity as a Function of Explosive 
Volume Expansion for Five Commercial Explosives
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Vg / D  ≅ (0.605 / [Γ-1]) (tcyl ρcyl / Rex ρex) (– 5/30)

(J. Roth per J.E. Kennedy) -- expanded

Vg-p / D  ≅ (0.541 / [Γ-1]) (tcyl ρcyl / Rex ρex) (– 5/30)

(Gas - push contribution model)

Currently available trend-line

Vg / D  ≅ (0.60 φ – 1/2 + 0.648 ρo
1/2) / (1.01 + 1.313 ρo)

(Hardesty & Kennedy / Kamlet & Hurwitz)

Future work

Vf = Vg (ρcyl/ρex) – 1/2 [(tcyl/Rex) 2 + 2 (tcyl/Rex) + 0.5 (ρex/ρcyl)] – 1/2

For use with


